Airborne measurements of spatial NO$_2$ distributions during AROMAT

Andreas C. Meier *(1), Anja Schönhardt (1), André Seyler(1), Andreas Richter (1), Daniel Constantin (3), Alexis Merlaud (4), Thomas Ruhtz (2), Carsten Lindemann (2) and John P. Burrows (1)

1. AROMAT campaign
- The AROMAT (Airborne Romanian Measurements of Aerosols and Trace Gases) campaign was held in September 2014.
- Dedicated to comparison of multiple remote sensing and in-situ instruments for satellite data validation.
- Many European research institutions involved.
- Two target sites: City of Bucharest (Urban emissions from transport and industry) and Jiu Valley (Two large power plants with high emissions and localized plumes).
- Shown here: Are solely measurements in the Bucharest area.

2. Instrumental setup and method
- Scatter sunlight from below the aircraft is collected and fed into an imaging spectrometer via an sorted fiber bundle (35 individual fibers), retaining the spatial information.

 ![Instrumental setup](image1)

3. NO$_2$ maps of Bucharest
- AirMAP is successfully used during AROMAT to create high resolution NO$_2$ maps of Bucharest and in addition (not shown here) the Turceni power plant.
- First inter-comparison with results from car DOAS instruments looks promising.
- Deviations between instruments can partly be explained by geometric considerations of observed air masses, but further investigation is needed.
- Improvement of instrumental setup to allow simultaneous retrieval of SO$_2$ and other trace gases in the UV spectral range.

 ![NO$_2$ map](image2)

4. Comparison to mobile car-DOAS measurements
- On the day 2014-09-08 (Fig. 4 top) mobile car-DOAS measurements were performed in coordination with the AirMAP flights.
- Shown below is a comparison of the differential slant column densities (DSCDs) measured by a zenith looking mobile car-DOAS system operated by the University of Galati and BIRA to DSCDs from AirMAP.
- For the comparison both datasets were gridded to 0.001° x 0.001° = 100 m2.

 ![Comparison to mobile car-DOAS](image3)

5. Summary & Outlook
- AirMAP was successfully used during AROMAT to create high resolution NO$_2$ maps of Bucharest and in addition (not shown here) the Turceni power plant.
- First inter-comparison with results from car DOAS instruments looks promising.
- Deviations between instruments can partly be explained by geometric considerations of observed air masses, but further investigation is needed.
- Improvement of instrumental setup to allow simultaneous retrieval of SO$_2$ and other trace gases in the UV spectral range.

 ![Summary & Outlook](image4)

Acknowledgements
The authors gratefully acknowledge funding of the AROMAT campaign by ESA, and further financial support by the University of Bremen. Moreover we would like to thank the Romanian authorities for the approval of the research flights and all institutions that contributed to the successful course of the campaign.

Selected references